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Abstract—Crack-growth resistance in transformation-toughened ceramics is studied by modeling
the region surrounding an advancing crack tip as a zone which has undergone a uniform dilatational
phase transtormation. This zone is allowed to evolve around the advancing crack tip under con-
ditions of increasing far-ficld load while the tip is maintained at a critical stress intensity necessary
for fracture. This procedure leads to the surprising conclusion that maximum toughening occurs
for finite amounts of crack advance.

INTRODUCTION

The discovery of enhanced fracture toughness in zirconia-enriched ceramics has led to a
flurry of experimental and theoretical analyses. It has been well established that the high
stresses near a crack tip can cause small zirconia particles, typically 1 gm or less in diameter,
to undergo a phase transformation from a tetragonal to a monoclinic crystal structure. The
unconstrained transformation can be decomposed into a 4% dilatation and a 16% shear
strain, However, due to the clastic constraint of the matrix phase, the particles in the
composite generally transform with twin bands of alternate character resulting in an overall
transformation strain considerably less than 16%. Consequently, the strain transformation
of particles embedded in the composite is usually assumed to be dilatant.

The transformed region has the remarkable property of allowing stable crack growth
to occur in the composite material, whereas the unreinforeed ceramic exhibits no such
behavior. Stable crack growth on the order of several millimeters has been observed, and
R-curves (i.c. stress intensity versus crick extension) for a varicty of zirconia-reinforced
composites have been measured.

Theoretical studies of transformation toughening including those of McMeeking and
Evans (1982), Budiansky er al. (1983), Amazigo and Budiansky (1988), Rose (1986a) and
Lambropoulos (1986) hive considered only steady-state toughening, wherein a semi-infinite
planar crack is surrounded by a semi-infinite zone of dilatation, as shown in Fig. [(a).
Using a primitive analysis, Rose (1986b) also examined the effect of allowing an initial
transformation zone to grow with an advancing crack tip. The objective of this study is to
present a complete analysis of the growing crack by solving for the initial transformation
zone and studying its growth around a crack tip advancing under increasing, far field,
Mode-1 loading. This analysis will reveal the surprising result thut maximum toughening
occeurs for a finite amount of crack advance.

INITIAL ZONES

The modeling approach adopted in this study, consistent with previous work, is to
assume that a transformation zone surrounding the initial crack tip has undergone an
irreversible transformation dilatation of strength cf);, as shown in Fig. 1(b), where ¢ is the
zirconia particle volume fraction and @] is the unconstrained particle dilatation. The crack
will be taken to be semi-infinite and planar. The transformed and untransformed regions
will be assumed to have the same clastic moduli, and to be under plane strain.

Since typical zone sizes are of the order of 20 um or less, small compared to specimen
dimensions. the small scale zone-size approximation will be invoked. The stresses at dis-
tances far from the zone, but small compared to the size of the body, will be assumed to
be dominated by the classic Mode [ K-field. For r — o0, the stresses o,4 are given by
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Fig. 1. (a) Steady-state transformation zone surrounding a crack tp; (b) initial transformation
zone around a stationary cruck,
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where the F, (¢) are well known trigonometric functions and K'is the applied far-ficld stress
intensity. Similarly, in the vicinity of the crack tip, r — 0, the stresses are given by

where K, is the stress intensity at the crack tip.

The full transformation will be assumed to occur when the mean stress, o, = 64/3,
attains a critical value of,. This corresponds to the “‘supercritical” transformation case
considered by Budiansky es al. (1983). The value of o7, as discussed by Evans and Cannon
(1986), will depend on the stress and temperature history of the composite. Other trans-
formation criteria have also been proposed (Lambropoulos, 1986).

As shown by Budiansky er af., the application of the J-integral to the stationary crack
results in the conclusion that K, = K. Accordingly, if crack growth occurs at a critical
intensity, K, = K,,, where K, is independent of the particle concentration, the initial
transformation region induces no toughening. This neglects the possible cffects of other
toughening mechanisms such as microcracking.

To determine the boundary of the initial transformation zone (Fig. 1(b)), it is necessary
to insist that the mean stress g, attain the value ¢, as the boundary is approached from
the exterior of the zone. By the superposition of stresses, the mean stress exterior to the
zone boundary is the sum of contributions from the applied far-ficld and from dilatations
in the transformed region.

The mean stress due to the far-field stresses of eqn (1) is
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Fig. 2. Symmetrically located spots of dilatation.
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The mean stress contribution of the transformed zone can be found by first considering
that due to the two small circular spots of dilatation shown in Fig. 2. For spots of area
d,. strength ¢0]. and located at =, = x,+iyy and 3, = x,—iv,. the mean stress as found
by Hutchinson (1974) is
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The spots at z, and 3, induce a change in tip stress intensity
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Rewriting eqn (5) in terms of polar coordinates r and ¢, yields the equivalent form,

' Sh Y cos (3/2) dA,. 6
ARy = w(,n)“_v)r cos (3¢/2) d (6)

Transformations in the region ¢ < n/3 increase Ky, while those in the region ¢ > n/3
decrease K.

The effect of the entire zone on the mean stress can be caleulated by integrating eqn
(4) over the upper half’ A of the transformed zone (Fig. 1(b)). The equation for the zone
boundary is then obtained by adding the far ficld mean stress to the zone contribution and

cquating the sum to o;,. Thus, the equation governing points = = R(¢) ¢ on the boundary
is
K(14v) (nR\ “*
G = ( 3 )<-,> Cos ((/”/2)+J‘JA F(z,zp) dxg dyy M
- 4

where F(z,zy) is given by eqn (4).
Carrying out the intcgration with respect to dx, and sctting K = K, leads to the
following condition governing R(¢) when crack growth is imminent :
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where
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Here the parameter w, defined by
Ecol'l 14w
w = wf;:!’ [ } (10)
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is a non-dimensional measure of the strength of the transformation, and the characteristic
length Lis

L = ‘”2_ {éji(‘lt‘w)] . (rn

Note that L is the frontal intercept at ¢ = 0 of the 45, boundary for @ = 0.

The stress intensity at the tip is equal to the sum of the applied stress intensity and
that induced by the presence of the transformation zone. Integrating eqn (5) over upper
half of the zone and adding the applied far-field intensity results in the equation

r(()'
K(xp=K+ / Jj (-u 45,0 dy dyy (12)
6\/( l_\r

for K. Integrating with respect to dx, results in the equation

K, K 20("/R\'": dy,
K. =K —9(7:J- <1> cos (¢/2) l(b) (H

But, for the initial crack, K, = K, and for crack growth to occur K, = K,,. Hence, eqn
(13) with K,,/K,, = K/K,, = | serves as a check on the solution of (8) for the initial boundary
curve R(¢).

The procedure used to solve eqn (8) for R(¢)/L is described in Appendix A and the
results for various values of @ ranging from 0 to 30 arc shown in Fig. 3. The effect of
increased ¢ on the relative shapes of the zones can be seen in Fig. 4, where for each w all
distances have been normalized by the frontal intercept R(0).
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Fig. 4. Initial transformed zones normalized by frontal intercept length.
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Fig. 5. Steady-state and initial zone heights versus w.

Figure 5 shows the initial zone-heights of Fig. 3, together with the zone-heights
corresponding to steady-state crack growth calculated by Amazigo and Budiansky (1988).
For o = 30, the steady state zone height becomes infinite, corresponding to the “lock-
up” —i.c. infinite toughening —discovered by Rose (1986b).

GROWING CRACKS

Once the initial zone has been found, it is possible to contemplate its growth around
an advancing crack tip. As a growing crack moves into the body, material in the vicinity
of the tip attains the critical mean stress and transforms, while due to the irreversibility of
the transformation a wake region is left behind. Along a frontal portion of the transformed
zone-boundary the mean stress criterion is satisfied, while on the wake portion of the
boundary the mean stress wiil have dropped below a;,. According to eqn (6) material in
the transformed region which lies to the left of the radial line running through the tip at
the angle 7/3 reduces the stress intensity at the tip. To continue driving the crack forward.
the applied stress intensity must be incremented. Consequently to solve the growing crack
problem, both the stress intensity and zone shape must be found as functions of crack
extension.

The upper half of the instantancous zone around a growing crack is shown in Fig.
6(a). The boundary is modeled by three segments ; active, passive, and residual. The active
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Fig. 6. (a) Transtformation zone around a growing crack ; (b) zone extension modet used to find the
mstantancous active zone and passive segment growth,

scgment AB is the portion of the boundary where the mean stress has just reached a;,. The
mean stress on the remainder of the boundary has dropped below ), The residual segment
CD s the portion of the initial boundary left behind with the first increment of crack
growth, The intermediate passive portion BC is a growth dependent picee connecting the
active and residual segments. The passive portion is comprised entirely of the end points B
ol previous active segments, several ol which are shown in the sketeh.

The solution of the growing crack problem involves adapting the three segment approach
to a series of finite crack increments. In the limit of continuous crack advance, the passive
segment provides a smooth connection from the residual portion of the instantancous active
scgment, However for a series of finite crack increments, a piecewise linear approximation
to the passive zone can be constructed by connecting the residual segment to the currently
active segment with a series of straight lines running through the end points of previous
active pieces. In the limit of infinitesimal crack increments the approximate boundary
should coincide with the actual passive segment.

The scetup tor a typical growth increment Aa is shown in Fig. 6(b). The active segment
AB 15 described with respect to moving criack tip coordinates r and ¢, where ¢ 1s assumed
to span the angular interval from 0 to an unknown angle z. For the growth increment Aa
the passive segment extension is modeled by using a straight line to connect the end of the
instantancous active scgment, B, to B', the end of the previous active segment. Tangency
between the active and passive segments at B is enlorced. For the first crack increment, the
passive scgment connection with the initial zone shape must also be found. As shown in Fig.
6(b), the passive -residual boundary at Cwill be deseribed by the unknown angle 5, measured
with respect to the mitial crack position. Tangency between the residual and passive
scgments will also be enforced at point C.

The analysis presented for the initial crack problem can be applied to the growing
crack configuration with some slight moditications. The initial zone will be ailowed to grow
with an advancing crack tip under the dual requirements of satisfying the critical mean
stress condition on the active zone boundary and maintaining the tip stress intensity at K,,.

The mean stress criterion, eqn (7), 1s enforced with the understanding that the angle
¢ is restricted to the interval 0 < ¢ < 2. Introducing the nondimensional toughening par-
ameter A = A'K,,,, carrying out the integration with respect to dv,, and regrouping eqn (7)
results in the expression
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Fig. 7. Growing zones tor o = 5, 10.

i)

| = A(%) " cos (¢2)— -J M(, ¢)d“’(¢) (14)

governing the active zone boundary R(¢)/L. All distances in eqn (14) are measured from
the crack tip and the integration extends over the entire boundary 0 < ¢° < =.
The tip stress-intensity-fiactor can be maintained at K, by enforcing eqn (13), which

now requires
2w R\ '"? »0(¢)
_ .. ]
A=1+ 9n,[ (L> cos (p/2) = (13)

The system (14) and (15) constitutes a nonlincar integral equation and a scalar equation
for R(¢p)/L and A. For the initial crack increment, eqns (14), (15) and tangency conditions
at 2 and f, can be solved for R(¢)/L in (0 < ¢p < a), A, x and fi. For a serics of subsequent
crack increments R(¢)/L, A, and a are found repeatedly to generate the zone shape and
the crack-growth resistance. The solution procedure for each crack increment is outlined
in Appendix B.

Growing zone shapes for @ = 5 and 10 are shown in Fig. 7. The dashed curves indicate
the positions of active segments for various amounts of crack extension; the innermost
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Fig. 8. Resistance curves for o = 3, 10,

curve is the initiad boundary. The R-curves, plots of A versus Aa/L, for w = 5, 10 along with
their respective steady-state toughening asymptotes, as found by Amazigo and Budiansky
(1988), arc shown in Fig. 8. The results of Figs 7 and 8 are quite unexpected. The zone
height H/L and the toughening A both overshoot their steady-state levels for finite amounts
of crack advance before approaching them asymptotically from above.

The R-curves of Fig. 8 are qualitatively consistent with some available experimental
measurements. A number of investigators, including Swain (1983), and Swain and Hannink
(1984). have reported R-curves which exhibit peaks in toughness. However, the cor-
responding peak in zone height has not been reported. Even though the actual zone
boundary between transtormed and untransformed regions occurs over a diffuse region,
the issue of zone widening should be explored experimentally.

R-curves and transformation-zones have been calculated for various values of w, and
the results for the peak toughening A, and peak zone height /, arc shown in Table 1. Also
shown are the non-dimensional crack extensions Au(A,)/L and Aa(#,)/L at which A and
H. respectively. are maximized. Both A, and A, are seen to increase dramatically in the
tnterval 19 < @ < 20. Denoting the steady state toughening ratio K,/K,,. as calculated by
Amazigo and Budiansky (1988) by A,. we compare the toughening predictions for the
steady state and growing crack calculations in Fig. 9, which shows (A,) ~'and (A,) "' versus
. The implication for a growing crack is “lockup™ for @ greater than 20.2. The steady-
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Table 1.
w A, H,L Au(A,) L Aa(H) L
5 .29 1.03 5.5 24
10 1.80 1.91 10.25 5.6
15 3.07 5.17 294 8.4
173 5.06 13.6 81.0 55.0
19.5 16.3 351 2400 1875
20.0 74.3 2764 20.200 15.900
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Fig. 9. Reciprocal of peak and steady-state toughening versus .
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Fig. 10. Initial crack-growth resistance versus .

state configuration (Fig. 1(a)) cannot be reached from the growth of an initial zone for
w > 20.2.

It may be noted from Fig. 8 that a tiny secondary maximum appears in the R-curve
for «» = 10. For values of w greater than 10 (but less than 20.2) additional peaks of
decreasing amplitude were found to appear in the R-curves as the toughness decayed in an
oscillatory fashion to its steady-state magnitude.

By considering the initial slope of the R-curves, it is possible to define an initial tearing
resistance parameter

Saxw 25:h-F
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Fig. 11 Comparison with Hutchinson's (1987) results for tnital crack-growth resistance.
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Here ¢ represents the rate of toughening increase as the crack begins its initial growth
and ts plotted versus w in Fig. 10. A comparison can be made with the approximate results
of Hutchinson (1986) who neglected the effect of the trunsformation on the zone boundary
in his study of initial tearing resistance. Figure 11 shows a comparison of both scts of
calculations for small «. In the limit w — 0, the predictions coincide.

CONCLUDING REMARKS

In the presence of transforming particles, the resistance to crack growth, as measured
by the applicd stress intensity K, reaches a maximum at a finite amount of crack growth.
This maximum exceeds the steady-stute toughness by an amount that varies with the
transformation intensity parameter w. Furthermore, “lock-up™ (i.c. infinite toughening),
oceurs at a critical value of w = 20.2, which is substantially smaller than the value w = 30
corresponding to steady-state toughening. The potential benefits of transformation tough-
ening must be assessed on the basis of transient crack growth since the steady-state condition
seriously underestimates the toughening effect of transforming particles.
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APPENDIX A

The inttial zone boundary. R(¢), can be found by solving the nonlinear integral equation (8). However before
proceeding, it is instructive to examine the solution for w = 0 given by eqn (3) and shown in Fig. 3:

Rip) = L{12+1/2 cos ($)]. (A1)

Due to Mode-l symmetry, the boundary at ¢ = 0 intersects the axis ahead of the tip normally. However. at ¢ = r,
the boundary runs through the crack tip tangentially to the crack face.

For o # 0, the possibility that the boundary ut ¢ = detaches from the crack tip must be admitted. An
analysis of the integral in eqn (8) shows thut if R(n) # 0. the boundary intersects the crack faces normally. An
expansion tor Ri¢) meeting the boundary requirements at 0 and = is

¥
Rip) = E d, cos (nd). (A2)

a=iy

Substitution of eqn (A2) allows eqn (8) to be rewritten in the form
Glag oy, iy p) =1 =0 (A3)

where the function ¢ is the right-hand side of egn ().

In this study, the solution for the (V+ 1) unknown cocflicients was accomplished by collocating egn (A3) at
N H 1 equally spaced potnts, ¢ = am (N + 1) where n = (0,1,2,...,¥), in the interval 0 < ¢ < . A Newton
Raphson iterative technique was then used to solve for the ¥ + 1 unknown cocflicients. The integral in eqn (A3)
was eviluated by Gaussian quadrature. Convergence was assumed when the relative change in successive iterations
of each of the unknowns was less than 0.001. For the initial zones shown in Fig. 3, it was found that a 10-term
expansion was suflicient to obtain i highly accurate solution. As an additional check on the accuracy of the overall
shupe, the constraint on R(¢)/L, eqn (13) with K,,/K = |, was evaluated and found to hold to within 10 * for
cach of the zones of Fig. 3.

APPENDIX B
The solution for the unknowns R{¢), x, and A after a typical cruck increment (Fig. 6(b)) involves solving
the integral equation (14), the scalar equation (15), and mecting the tangency condition

b By = ) Bl
d.\'( )‘\aun: = d.\' |.a;m¢~ ( )

For the initial crack increment the system must be supplemented with the unknown ff and the additional tangency
cquation

dy dy
O [l )
dx(C Moamve i (ON o (B2)

An appropriate expinsion for the radius of the instantancous active segment which meets Mode-1 symmetry
conditions is

R($) = T a,Ts($/2) (83)

LEX!)

where the T, are the even Tchebyshev polynomials. Substituting this expression into (14), (15), and (Bl) results
in a set of equations for the unknowns (a,.4q,..... ay). 2, and A,

The solution procedure will be described for the general growth increment as shown in Fig. 6(b). For the
initial increment, the process is the same with f and (B2) added to the list of unknowns and equations. For a
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given Aa. a system of ¥ + 3 equations was generated by enforcing equations (15). (B1). and collocating eqn (14)
at ¥+ { equally spaced points ¢ = nx (N+ 1) (n =0,1.2,.... N+ 1). The equations were written in residual form
and Newton-Raphson method was used to find the solution. Gaussian quadrature was used to evaluate the
integrals in eqns (14) and (15). Convergence to a solution was specified by a relative change of less than 0.001
between iterations. A 6-term expansion for R(¢) was found sufficient to obtain a solution at all stages of growth.

Initial growth increments had to be small. <0.05 L. to capture the eurly zone shape. As crack extension
proceeded, it was found that the increment size could be increased. The number of increments necessary to grow
the crack to peaks in height and toughening varied greatly. For small values of o less than 50 increments were
sutficient. However for values of  between 17 and 20, several hundred increments were necessary to reach H,
and A,. During the growth process. the mean stress exterior to the zone was checked to confirm that it was less
than g.,. The final results shown herein were checked by calculations with the increment steps halved.



